Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biol Res ; 57(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173019

RESUMO

BACKGROUND: Tumor-derived small extracellular vesicles (sEVs) can promote tumorigenic and metastatic capacities in less aggressive recipient cells mainly through the biomolecules in their cargo. However, despite recent advances, the specific molecules orchestrating these changes are not completely defined. Lactadherin is a secreted glycoprotein typically found in the milk fat globule membrane. Its overexpression has been associated with increased tumorigenesis and metastasis in breast cancer (BC) and other tumors. However, neither its presence in sEVs secreted by BC cells, nor its role in sEV-mediated intercellular communication have been described. The present study focused on the role of lactadherin-containing sEVs from metastatic MDA-MB-231 triple-negative BC (TNBC) cells (sEV-MDA231) in the promotion of pro-metastatic capacities in non-tumorigenic and non-metastatic recipient cells in vitro, as well as their pro-metastatic role in a murine model of peritoneal carcinomatosis. RESULTS: We show that lactadherin is present in sEVs secreted by BC cells and it is higher in sEV-MDA231 compared with the other BC cell-secreted sEVs measured through ELISA. Incubation of non-metastatic recipient cells with sEV-MDA231 increases their migration and, to some extent, their tumoroid formation capacity but not their anchorage-independent growth. Remarkably, lactadherin blockade in sEV-MDA231 results in a significant decrease of those sEV-mediated changes in vitro. Similarly, intraperitoneally treatment of mice with MDA-MB-231 BC cells and sEV-MDA231 greatly increase the formation of malignant ascites and tumor micronodules, effects that were significantly inhibited when lactadherin was previously blocked in those sEV-MDA231. CONCLUSIONS: As to our knowledge, our study provides the first evidence on the role of lactadherin in metastatic BC cell-secreted sEVs as promoter of: (i) metastatic capacities in less aggressive recipient cells, and ii) the formation of malignant ascites and metastatic tumor nodules. These results increase our understanding on the role of lactadherin in sEVs as promoter of metastatic capacities which can be used as a therapeutic option for BC and other malignancies.


Assuntos
Ascite , Vesículas Extracelulares , Animais , Camundongos , Transporte Biológico , Carcinogênese , Comunicação Celular , Humanos , Linhagem Celular Tumoral
2.
Biol. Res ; 57: 1-1, 2024. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1550056

RESUMO

BACKGROUND: Tumor-derived small extracellular vesicles (sEVs) can promote tumorigenic and metastatic capacities in less aggressive recipient cells mainly through the biomolecules in their cargo. However, despite recent advances, the specific molecules orchestrating these changes are not completely defined. Lactadherin is a secreted 0protein typically found in the milk fat globule membrane. Its overexpression has been associated with increased tumorigenesis and metastasis in breast cancer (BC) and other tumors. However, neither its presence in sEVs secreted by BC cells, nor its role in sEV-mediated intercellular communication have been described. The present study focused on the role of lactadherin-containing sEVs from metastatic MDA-MB-231 triple-negative BC (TNBC) cells (sEV-MDA231) in the promotion of pro-metastatic capacities in non-tumorigenic and non-metastatic recipient cells in vitro, as well as their pro-metastatic role in a murine model of peritoneal carcinomatosis. RESULTS: We show that lactadherin is present in sEVs secreted by BC cells and it is higher in sEV-MDA231 compared with the other BC cell-secreted sEVs measured through ELISA. Incubation of non-metastatic recipient cells with sEV- MDA231 increases their migration and, to some extent, their tumoroid formation capacity but not their anchorage-independent growth. Remarkably, lactadherin blockade in sEV-MDA231 results in a significant decrease of those sEV-mediated changes in vitro. Similarly, intraperitoneally treatment of mice with MDA-MB-231 BC cells and sEV-MDA231 greatly increase the formation of malignant ascites and tumor micronodules, effects that were significantly inhibited when lactadherin was previously blocked in those sEV-MDA231. CONCLUSIONS: As to our knowledge, our study provides the first evidence on the role of lactadherin in metastatic BC cell-secreted sEVs as promoter of: (i) metastatic capacities in less aggressive recipient cells, and ii) the formation of malignant ascites and metastatic tumor nodules. These results increase our understanding on the role of lactadherin in sEVs as promoter of metastatic capacities which can be used as a therapeutic option for BC and other malignancies.


Assuntos
Humanos , Animais , Camundongos , Ascite , Vesículas Extracelulares , Transporte Biológico , Comunicação Celular , Linhagem Celular Tumoral , Carcinogênese
4.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37786704

RESUMO

Objective: Gastric intestinal metaplasia (GIM) is a precancerous lesion that increases gastric cancer (GC) risk. The Operative Link on GIM (OLGIM) is a combined clinical-histopathologic system to risk-stratify patients with GIM. The identification of molecular biomarkers that are indicators for advanced OLGIM lesions may improve cancer prevention efforts. Methods: This study was based on clinical and genomic data from four cohorts: 1) GAPS, a GIM cohort with detailed OLGIM severity scoring (N=303 samples); 2) the Cancer Genome Atlas (N=198); 3) a collation of in-house and publicly available scRNA-seq data (N=40), and 4) a spatial validation cohort (N=5) consisting of annotated histology slides of patients with either GC or advanced GIM. We used a multi-omics pipeline to identify, validate and sequentially parse a highly-refined signature of 26 genes which characterize high-risk GIM. Results: Using standard RNA-seq, we analyzed two separate, non-overlapping discovery (N=88) and validation (N=215) sets of GIM. In the discovery phase, we identified 105 upregulated genes specific for high-risk GIM (defined as OLGIM III-IV), of which 100 genes were independently confirmed in the validation set. Spatial transcriptomic profiling revealed 36 of these 100 genes to be expressed in metaplastic foci in GIM. Comparison with bulk GC sequencing data revealed 26 of these genes to be expressed in intestinal-type GC. Single-cell profiling resolved the 26-gene signature to both mature intestinal lineages (goblet cells, enterocytes) and immature intestinal lineages (stem-like cells). A subset of these genes was further validated using single-molecule multiplex fluorescence in situ hybridization. We found certain genes (TFF3 and ANPEP) to mark differentiated intestinal lineages, whereas others (OLFM4 and CPS1) localized to immature cells in the isthmic/crypt region of metaplastic glands, consistent with the findings from scRNAseq analysis. Conclusions: using an integrated multi-omics approach, we identified a novel 26-gene expression signature for high-OLGIM precursors at increased risk for GC. We found this signature localizes to aberrant intestinal stem-like cells within the metaplastic microenvironment. These findings hold important translational significance for future prevention and early detection efforts.

5.
Cancers (Basel) ; 15(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831500

RESUMO

Although obesity-associated metabolic disorders have a negative impact on various cancers, such evidence remains controversial for ovarian cancer. Here, we aimed to evaluate the impact of body composition (BC) and metabolism disorders on outcomes in high-grade serous ovarian cancer (HGSOC). METHODS: We analyzed clinical/genomic data from two cohorts (PUC n = 123/TCGA-OV n = 415). BC was estimated using the measurement of adiposity/muscle mass by a CT scan. A list of 425 genes linked to obesity/lipid metabolism was used to cluster patients using non-negative matrix factorization. Differential expression, gene set enrichment analyses, and Ecotyper were performed. Survival curves and Cox-regression models were also built-up. RESULTS: We identified four BC types and two clusters that, unlike BMI, effectively correlate with survival. High adiposity and sarcopenia were associated with worse outcomes. We also found that recovery of a normal BC and drug interventions to correct metabolism disorders had a positive impact on outcomes. Additionally, we showed that immune-cell-depleted microenvironments predominate in HGSOC, which was more evident among the BC types and the obesity/lipid metabolism cluster with worse prognosis. CONCLUSIONS: We have demonstrated the relevance of BC and metabolism disorders as determinants of outcomes in HGSOC. We have shone a spotlight on the relevance of incorporating corrective measures addressing these disorders to obtain better results.

6.
Cancers (Basel) ; 16(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201508

RESUMO

Chronic inflammation influences the tumor immune microenvironment (TIME) in high-grade serous ovarian cancer (HGSOC). Specifically, cyclooxygenase-2 (COX-2) overexpression promotes cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) expression. Notably, elevated COX-2 levels in the TIME have been associated with reduced response to anti-CTLA-4 immunotherapy. However, the precise impact of COX-2, encoded by PTGS2, on the immune profile remains unknown. To address this, we performed an integrated bioinformatics analysis using data from the HGSOC cohorts (TCGA-OV, n = 368; Australian cohort AOCS, n = 80; GSE26193, n = 62; and GSE30161, n = 45). Employing Gene Set Variation Analysis (GSVA), MIXTURE and Ecotyper cell deconvolution algorithms, we concluded that COX-2 was linked to immune cell ecosystems associated with shorter survival, cell dysfunction and lower NK cell effector cytotoxicity capacity. Next, we validated these results by characterizing circulating NK cells from HGSOC patients through flow cytometry and cytotoxic assays while undergoing COX-2 and CTLA-4 blockade. The blockade of COX-2 improved the cytotoxic capacity of NK cells against HGSOC cell lines. Our findings underscore the relevance of COX-2 in shaping the TIME and suggest its potential as a prognostic indicator and therapeutic target. Increased COX-2 expression may hamper the effectivity of immunotherapies that require NK cell effector function. These results provide a foundation for experimental validation and clinical trials investigating combined therapies targeting COX-2 and CTLA-4 in HGSOC.

7.
Int J Gynaecol Obstet ; 155 Suppl 1: 123-134, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34669205

RESUMO

Despite the evidence supporting the relevance of obesity and obesity-associated disorders in the development, management, and prognosis of various cancers, obesity rates continue to increase worldwide. Growing evidence supports the involvement of obesity in the development of gynecologic malignancies. This article explores the molecular basis governing the alteration of hallmarks of cancer in the development of obesity-related gynecologic malignancies encompassing cervical, endometrial, and ovarian cancers. We highlight specific examples of how development, management, and prognosis are affected for each cancer, incorporate current knowledge on complementary approaches including lifestyle interventions to improve patient outcomes, and highlight how new technologies are helping us better understand the biology underlying this neglected pandemic.


Assuntos
Neoplasias do Endométrio , Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Neoplasias do Colo do Útero , Feminino , Neoplasias dos Genitais Femininos/epidemiologia , Humanos , Obesidade/complicações , Obesidade/epidemiologia , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/etiologia
8.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166049, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401001

RESUMO

Non-coding RNAs (ncRNAs) contribute to the regulation of gene expression. By acting as competing endogenous RNA (ceRNA), long non-coding RNAs (lncRNAs) hijack microRNAs (miRNAs) and inhibit their ability to bind their coding targets. Viral miRNAs can compete with and target the same transcripts as human miRNAs, shifting the balance in networks associated with multiple cellular processes and diseases. Epstein-Barr virus (EBV) is an example of how a subset of viral coding RNA and non-coding RNAs can cause deregulation of human transcripts and contribute to the development of EBV-associated malignancies. EBV non-coding transforming genes include lncRNAs (i.e circular RNAs), and small ncRNAs (i.e. miRNAs). Among the latter, most ongoing research has focused on miR-BARTs whereas target many genes associated with apoptosis and epithelial-mesenchymal transition, in EBV-associated gastric cancer (GC). In this review, we propose to include the interactions between EBV ncRNAs human transcripts in the hypothesis known as "competitive viral and host RNAs". These interactions may shift the balance in biological pathways such as apoptosis and epithelial-mesenchymal transition in EBV-associated gastric cancer.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Viral/genética , Neoplasias Gástricas/genética , Animais , Apoptose , Transição Epitelial-Mesenquimal , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/virologia
9.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322837

RESUMO

Reprimo-like (RPRML) is an uncharacterized member of the Reprimo gene family. Here, we evaluated the role of RPRML and whether its regulation by DNA methylation is a potential non-invasive biomarker of gastric cancer. RPRML expression was evaluated by immunohistochemistry in 90 patients with gastric cancer and associated with clinicopathologic characteristics and outcomes. The role of RPRML in cancer biology was investigated in vitro, through RPRML ectopic overexpression. Functional experiments included colony formation, soft agar, MTS, and Ki67 immunofluorescence assays. DNA methylation-mediated silencing was evaluated by the 5-azacytidine assay and direct bisulfite sequencing. Non-invasive detection of circulating methylated RPRML DNA was assessed in 25 gastric cancer cases and 25 age- and sex-balanced cancer-free controls by the MethyLight assay. Downregulation of RPRML protein expression was associated with poor overall survival in advanced gastric cancer. RPRML overexpression significantly inhibited clonogenic capacity, anchorage-independent growth, and proliferation in vitro. Circulating methylated RPRML DNA distinguished patients with gastric cancer from controls with an area under the curve of 0.726. The in vitro overexpression results and the poor patient survival associated with lower RPRML levels suggest that RPRML plays a tumor-suppressive role in the stomach. Circulating methylated RPRML DNA may serve as a biomarker for the non-invasive detection of gastric cancer.


Assuntos
Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/sangue , Metilação de DNA , Genes Supressores de Tumor , Proteínas de Membrana/sangue , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Regulação para Cima
10.
Mol Oncol ; 14(11): 2834-2852, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33326125

RESUMO

Gallbladder stones (cholecystolithiasis) are the main risk factor for gallbladder cancer (GBC), a lethal biliary malignancy with poor survival rates worldwide. Gallbladder stones are thought to damage the gallbladder epithelium and trigger chronic inflammation. Preneoplastic lesions that arise in such an inflammatory microenvironment can eventually develop into invasive carcinoma, through mechanisms that are not fully understood. Here, we developed a novel gallbladder preneoplasia mouse model through the administration of two lithogenic diets (a low- or a high-cholesterol diet) in wild-type C57BL/6 mice over a period of 9 months. Additionally, we evaluated the chemopreventive potentials of the anti-inflammatory drug aspirin and the cholesterol absorption inhibitor ezetimibe. Both lithogenic diets induced early formation of gallbladder stones, together with extensive inflammatory changes and widespread induction of metaplasia, an epithelial adaptation to tissue injury. Dysplastic lesions were presented only in mice fed with high-cholesterol diet (62.5%) in late stages (9th month), and no invasive carcinoma was observed at any stage. The cholesterol absorption inhibitor ezetimibe inhibited gallbladder stone formation and completely prevented the onset of metaplasia and dysplasia in both lithogenic diets, whereas aspirin partially reduced metaplasia development only in the low-cholesterol diet setting. This model recapitulates several of the structural and inflammatory findings observed in human cholecystolithiasic gallbladders, making it relevant for the study of gallbladder carcinogenesis. In addition, our results suggest that the use of cholesterol absorption inhibitors and anti-inflammatory drugs can be evaluated as chemopreventive strategies to reduce the burden of GBC among high-risk populations.


Assuntos
Aspirina/uso terapêutico , Quimioprevenção , Ezetimiba/uso terapêutico , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/prevenção & controle , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/prevenção & controle , Animais , Colecistolitíase/complicações , Colesterol/metabolismo , Colesterol na Dieta , Doença Crônica , Dieta , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/patologia , Comportamento Alimentar , Neoplasias da Vesícula Biliar/patologia , Cálculos Biliares/etiologia , Cálculos Biliares/patologia , Inflamação/patologia , Masculino , Metaplasia , Camundongos Endogâmicos C57BL , Lesões Pré-Cancerosas/patologia , Baço/patologia
11.
Sci Rep ; 10(1): 4068, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111873

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Sci Rep ; 9(1): 7131, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073223

RESUMO

The Reprimo gene family comprises a group of single-exon genes for which their physiological function remains poorly understood. Heretofore, mammalian Reprimo (RPRM) has been described as a putative p53-dependent tumor suppressor gene that functions at the G2/M cell cycle checkpoint. Another family member, Reprimo-like (RPRML), has not yet an established role in physiology or pathology. Importantly, RPRML expression pattern is conserved between zebrafish and human species. Here, using CRISPR-Cas9 and antisense morpholino oligonucleotides, we disrupt the expression of rprml in zebrafish and demonstrate that its loss leads to impaired definitive hematopoiesis. The formation of hemangioblasts and the primitive wave of hematopoiesis occur normally in absence of rprml. Later in development there is a significant reduction in erythroid-myeloid precursors (EMP) at the posterior blood island (PBI) and a significant decline of definitive hematopoietic stem/progenitor cells (HSPCs). Furthermore, loss of rprml also increases the activity of caspase-3 in endothelial cells within the caudal hematopoietic tissue (CHT), the first perivascular niche where HSPCs reside during zebrafish embryonic development. Herein, we report an essential role for rprml during hematovascular development in zebrafish embryos, specifically during the definitive waves of hematopoiesis, indicating for the first time a physiological role for the rprml gene.


Assuntos
Hemangioblastos/metabolismo , Proteínas de Membrana/genética , Peixe-Zebra/embriologia , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Desenvolvimento Embrionário , Hematopoese , Morfolinos/farmacologia , Família Multigênica , Peixe-Zebra/sangue , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Int J Mol Sci ; 19(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941787

RESUMO

The reprimo (RPRM) gene family is a group of single exon genes present exclusively within the vertebrate lineage. Two out of three members of this family are present in humans: RPRM and RPRM-Like (RPRML). RPRM induces cell cycle arrest at G2/M in response to p53 expression. Loss-of-expression of RPRM is related to increased cell proliferation and growth in gastric cancer. This evidence suggests that RPRM has tumor suppressive properties. However, the molecular mechanisms and signaling partners by which RPRM exerts its functions remain unknown. Moreover, scarce studies have attempted to characterize RPRML, and its functionality is unclear. Herein, we highlight the role of the RPRM gene family in gastric carcinogenesis, as well as its potential applications in clinical settings. In addition, we summarize the current knowledge on the phylogeny and expression patterns of this family of genes in embryonic zebrafish and adult humans. Strikingly, in both species, RPRM is expressed primarily in the digestive tract, blood vessels and central nervous system, supporting the use of zebrafish for further functional characterization of RPRM. Finally, drawing on embryonic and adult expression patterns, we address the potential relevance of RPRM and RPRML in cancer. Active investigation or analytical research in the coming years should contribute to novel translational applications of this poorly understood gene family as potential biomarkers and development of novel cancer therapies.


Assuntos
Proteínas de Ciclo Celular/genética , Metilação de DNA/genética , Glicoproteínas/genética , Proteínas de Membrana/genética , Neoplasias Gástricas/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Regiões Promotoras Genéticas , Neoplasias Gástricas/patologia
14.
Front Microbiol ; 9: 636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675003

RESUMO

Emerging evidence suggests that chronic inflammation caused by pathogen infection is connected to the development of various types of cancer. It is estimated that up to 20% of all cancer deaths is linked to infections and inflammation. In gastric cancer, such triggers can be infection of the gastric epithelium by either Helicobacter pylori (H. pylori), a bacterium present in half of the world population; or by Epstein-Barr virus (EBV), a double-stranded DNA virus which has recently been associated with gastric cancer. Both agents can establish lifelong inflammation by evolving to escape immune surveillance and, under certain conditions, contribute to the development of gastric cancer. Non-coding RNAs, mainly microRNAs (miRNAs), influence the host innate and adaptive immune responses, though long non-coding RNAs and viral miRNAs also alter these processes. Reports suggest that chronic infection results in altered expression of host miRNAs. In turn, dysregulated miRNAs modulate the host inflammatory immune response, favoring bacterial survival and persistence within the gastric mucosa. Given the established roles of miRNAs in tumorigenesis and innate immunity, they may serve as an important link between H. pylori- and EBV-associated inflammation and carcinogenesis. Example of this is up-regulation of miR-155 in H. pylori and EBV infection. The tumor environment contains a variety of cells that need to communicate with each other. Extracellular vesicles, especially exosomes, allow these cells to deliver certain type of information to other cells promoting cancer growth and metastasis. Exosomes have been shown to deliver not only various types of genetic information, mainly miRNAs, but also cytotoxin-associated gene A (CagA), a major H. pylori virulence factor. In addition, a growing body of evidence demonstrates that exosomes contain genetic material of viruses and viral miRNAs and proteins such as EBV latent membrane protein 1 (LMP1) which are delivered into recipient cells. In this review, we focus on the dysregulated H. pylori- and EBV-associated miRNAs while trying to unveil possible causal mechanisms. Moreover, we discuss the role of exosomes as vehicles for miRNA delivery in H. pylori- and EBV-related carcinogenesis.

15.
Front Neuroanat ; 12: 23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636669

RESUMO

The Reprimo (RPRM) family is composed of highly conserved single-exon genes. The expression pattern of this gene family has been recently described during zebrafish (Danio rerio) embryogenesis, and primarily locates in the nervous system. Its most characterized member, RPRM, which duplicated to give rise rprma and rprmb in the fish lineage, is known to act as a tumor-suppressor gene in mammalian models. Here, we describe in detail the spatiotemporal expression of three rprm genes (rprma, rprmb, and rprml) within distinct anatomical structures in the developing peripheral and central nervous system. In the zebrafish, rprma mRNA is expressed in the olfactory placodes (OP) and olfactory epithelium (OE), rprmb is observed in the tectum opticum (TeO) and trigeminal ganglion (Tg), whereas rprml is found primarily in the telencephalon (Tel). At protein level, RPRM is present in a subset of cells in the OP, and neurons in the OE, TeO, hindbrain and sensory peripheral structures. Most importantly, the expression of RPRM has been conserved between teleosts and mammals. Thus, we provide a reference dataset describing the expression patterns of RPRM gene products during zebrafish and mouse development as a first step to approach the physiological role of the RPRM gene family.

16.
Oncotarget ; 9(16): 12853-12867, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29560115

RESUMO

BACKGROUND: The objective of the study was to determine the relationship between Survivin and Reprimo transcript/protein expression levels, and gastric cancer outcome. METHODS: In silico correlations between an agnostic set of twelve p53-dependent apoptosis and cell-cycle genes were explored in the gastric adenocarcinoma TCGA database, using cBioPortal. Findings were validated by regression analysis of RNAseq data. Separate regression analyses were performed to assess the impact of p53 status on Survivin and Reprimo. Quantitative reverse-transcription PCR (RT-qPCR) and immunohistochemistry confirmed in silico findings on fresh-frozen and paraffin-embedded gastric cancer tissues, respectively. Wild-type (AGS, SNU-1) and mutated p53 (NCI-N87) cell lines transfected with pEGFP-Survivin or pCMV6-Reprimo were evaluated by RT-qPCR and Western blotting. Kaplan-Meier method and Long-Rank test were used to assess differences in patient outcome. RESULTS: cBioPortal analysis revealed an inverse correlation between Survivin and Reprimo expression (Pearson's r= -0.3, Spearman's ρ= -0.55). RNAseq analyses confirmed these findings (Spearman's ρ= -0.37, p<4.2e-09) and revealed p53 dependence in linear regression models (p<0.05). mRNA and protein levels validated these observations in clinical samples (p<0.001). In vitro analysis in cell lines demonstrated that increasing Survivin reduced Reprimo, while increasing Reprimo reduced Survivin expression, but only did so in p53 wild-type gastric cells (p<0.05). Survivin-positive but Reprimo-negative patients displayed shorter overall survival rates (p=0.047, Long Rank Test) (HR=0.32; 95%IC: 0.11-0.97; p=0.044). CONCLUSIONS: TCGA RNAseq data analysis, evaluation of clinical samples and studies in cell lines identified an inverse relationship between Survivin and Reprimo. Elevated Survivin and reduced Reprimo protein expression correlated with poor patient prognosis in gastric cancer.

17.
PLoS One ; 12(5): e0178274, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562620

RESUMO

Reprimo (RPRM), a member of the RPRM gene family, is a tumor-suppressor gene involved in the regulation of the p53-mediated cell cycle arrest at G2/M. RPRM has been associated with malignant tumor progression and proposed as a potential biomarker for early cancer detection. However, the expression and role of RPRM, as well as its family, are poorly understood and their physiology is as yet unstudied. In this scenario, a model system like the zebrafish could serve to dissect the role of the RPRM family members in vivo. Phylogenetic analysis reveals that RPRM and RPRML have been differentially retained by most species throughout vertebrate evolution, yet RPRM3 has been retained only in a small group of distantly related species, including zebrafish. Herein, we characterized the spatiotemporal expression of RPRM (present in zebrafish as an infraclass duplication rprma/rprmb), RPRML and RPRM3 in the zebrafish. By whole-mount in situ hybridization (WISH) and fluorescent in situ hybridization (FISH), we demonstrate that rprm (rprma/rprmb) and rprml show a similar spatiotemporal expression profile during zebrafish development. At early developmental stages rprmb is expressed in somites. After one day post-fertilization, rprm (rprma/rprmb) and rprml are expressed in the notochord, brain, blood vessels and digestive tube. On the other hand, rprm3 shows the most unique expression profile, being expressed only in the central nervous system (CNS). We assessed the expression patterns of RPRM gene transcripts in adult zebrafish and human RPRM protein product in tissue samples by RT-qPCR and immunohistochemistry (IHC) staining, respectively. Strikingly, tissue-specific expression patterns of the RPRM transcripts and protein are conserved between zebrafish and humans. We propose the zebrafish as a powerful tool to elucidate the both physiological and pathological roles of the RPRM gene family.


Assuntos
Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica , Glicoproteínas/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Hibridização in Situ Fluorescente , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia
18.
Gene ; 591(1): 245-254, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27432065

RESUMO

Genes related to human diseases should be natural targets for evolutionary studies, since they could provide clues regarding the genetic bases of pathologies and potential treatments. Here we studied the evolution of the reprimo gene family, a group of tumor-suppressor genes that are implicated in p53-mediated cell cycle arrest. These genes, especially the reprimo duplicate located on human chromosome 2, have been associated with epigenetic modifications correlated with transcriptional silencing and cancer progression. We demonstrate the presence of a third reprimo lineage that, together with the reprimo and reprimo-like genes, appears to have been differentially retained during the evolutionary history of vertebrates. We present evidence that these reprimo lineages originated early in vertebrate evolution and expanded as a result of the two rounds of whole genome duplications that occurred in the last common ancestor of vertebrates. The reprimo gene has been lost in birds, and the third reprimo gene lineage has been retained in only a few distantly related species, such as coelacanth and gar. Expression analyses revealed that the reprimo paralogs are mainly expressed in the nervous system. Different vertebrate lineages have retained different reprimo paralogs, and even in species that have retained multiple copies, only one of them is heavily expressed.


Assuntos
Proteínas de Ciclo Celular/genética , Evolução Molecular , Genes Supressores de Tumor , Família Multigênica , Filogenia , Vertebrados/genética , Sequência de Aminoácidos , Animais , Duplicação Gênica , Humanos , Funções Verossimilhança , Alinhamento de Sequência , Sintenia/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
19.
Dis Markers ; 2015: 503762, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379360

RESUMO

Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death, whose patterns vary among geographical regions and ethnicities. It is a multifactorial disease, and its development depends on infection by Helicobacter pylori (H. pylori) and Epstein-Barr virus (EBV), host genetic factors, and environmental factors. The heterogeneity of the disease has begun to be unraveled by a comprehensive mutational evaluation of primary tumors. The low-abundance of mutations suggests that other mechanisms participate in the evolution of the disease, such as those found through analyses of noncoding genomics. Noncoding genomics includes single nucleotide polymorphisms (SNPs), regulation of gene expression through DNA methylation of promoter sites, miRNAs, other noncoding RNAs in regulatory regions, and other topics. These processes and molecules ultimately control gene expression. Potential biomarkers are appearing from analyses of noncoding genomics. This review focuses on noncoding genomics and potential biomarkers in the context of gastric cancer and the gastric precancerous cascade.


Assuntos
Biomarcadores Tumorais/genética , RNA não Traduzido/genética , Neoplasias Gástricas/genética , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA